244.02

Functional and pharmacological evaluation of iPSC-derived astrocytes generated by a rapid differentiation method

Yuina Wada^{1*}, Yuki Kaga¹, Tatsuya Sameshima¹, Michaela Kilander², Tomoyuki Aratani¹, Rie Yamoto¹, Toshihiko Hosoya¹ ¹Ricoh Company, Ltd., ²Elixirgen Scientific, Inc.

Introduction

iPSC-derived neural and glial cells generated by the Quick-Tissue[™] technology

The Quick-Tissue[™] technology is a transcription factor-based method for rapid differentiation of stem cells (iPSCs or ESCs) into desired cell types. With this method, a pure population of differentiated cells can be produced typically within 10 days.

• Aim of this study

We evaluate whether the Quick-Glia[™] Astrocytes (iPSC-derived astrocytes) provide supportive functions that are similar to that of human primary astrocytes and whether their co-culture system is suitable for HTS assays.

Materials and Methods

- Cells: Human iPSC-derived astrocytes (Quick-Glia[™] Astrocyte) and iPSC-derived excitatory neurons (Quick-Neuron[™] Excitatory) from Elixirgen Scientific, Primary Human astrocytes from ScienCell Research Laboratories (in 384-well plate assay) and Thermo Fisher Scientific (in MEA assay)
- Plate: 384-well plate (Thermo Fisher Scientific) or CytoView MEA 48 (Axion) ● Medium conditions: Neurobasal Plus Medium, B-27[™] Plus Supplement, Neuron Culture
- Medium (FUJIFILM Wako Pure Chemical Corporation)
- **Culture period**: 6 or 7 weeks (post-differentiation)
- Calcium imaging:
 - Instrument: FDSS/µCell system
 - Ca²⁺ indicator: Cal-520, AM (f.c. 2 µM)
 - Measurement time: 20 min
 - Data acquisition interval: 0.1 sec
- Monitoring electrical activity (MEA):
 - Instrument: Maestro Pro (Axion)
 - Measurement time: 10min
- Coating methods: Ricoh's method
- Neurons (10,000 cells /well)
- Astrocytes (2,500 cells /well)
- Coating materials: PEI / Matrigel
- Neurons (80,000 cells /well)
- Astrocytes (20,000 cells /well)

Result 1: The expression of astrocytic markers

Immunofluorescence of Quick-Glia[™] Astrocyte shows the expression of the astrocytic markers GFAP, S100β and ALDH1L1 on days 7 post-differentiation (scale bar = $100 \mu m$).

More than 80% of cells with high expression of astrocytic markers GFAP, S100ß and ALDH1L1.

iPSC-derived astrocyte is a pure cell population of astrocytes expressing astrocytic markers.

Result 2: Ca²⁺ transient assay in 384-well plates

Evaluation of neuronal-supportive functions

iPSC-derived astrocytes provide neuron-supportive functions.

Evaluation of variability in the co-culture

PSC-derived astrocytes in 384-well plates. 7 weeks after differentiation. Single squares represent single wells in the 384-well plate.

- Cells in all well exhibited spontaneous Ca²⁺ spikes.
- No difference in number of Ca²⁺ spikes between wells in all conditions (CV < 0.3), and median value is in the range 18-21.

Astrocyte lot Neuron lot Plate Date

Evaluation of drug responses

Drug responses of co-cultured neurons with iPSC-derived astrocytes

CNQX, D-AP5, GABA, 4-AP, CBZ and Linopirdine: Pharmacological effects detected dose-dependently Amoxapine >6.7 µM: Pharmacological effects detected, <20 µM: Excitotoxicity detected Glutamate and Kainic acid: Excitotoxicity detected PTZ and Picrotoxin: No effects

Comparison of drug responses

Calcium spikes of the co-cultured neurons exhibited stronger synchrony and higher

Co-culture with iPSC-derived astrocytes shows the same increase in spike number as when cocultured with human astrocytes.

 $h \ge 60, ***p < 0.001$. The significant difference for mono-cultured neurons was

Variation of number of Ca²⁺ spikes

Co-culture with iPSC-derived astrocytes shows the similar drug responses in spike number as when mono-cultured neurons and co-cultured with human astrocytes.

10 min after drug administration. \times means 0. n = 6. **p<0.001. Statistical significance of the comparison to 0.1% DMSO was determined by the Wilcoxon rank sum test.

Summary of drug responses in 384-well plates											
	Receptor/ Ion channel	Mode	Compound	cha	Expected nges in spike	Spik	e number chang neurons with a	changes in cocultured with astrocytes			
				number		Hun	nan primary	iPSC-derived			
	AMPA/NMDA receptors	agonist	Glutamate	ſ	Excitatory	\downarrow	Excitotoxicity	\downarrow	Excitotoxicity		
	Kainate receptors	agonist	Kainic acid	1	Excitatory	\downarrow	Excitotoxicity	\downarrow	Excitotoxicity		
	AMPA/Kainate receptors	antagonist	CNQX	\downarrow	Inhibitory	\downarrow	0	\downarrow	0		
	NMDA receptors	antagonist	D-AP5	\downarrow	Inhibitory	\downarrow	\bigcirc	\downarrow	\bigcirc		
	Serotonergic receptors	Inhibitor	Amoxapine	ſ	Excitatory	↑	0	ſ	0		
	GABA receptor	agonist	GABA	\downarrow	Inhibitory	\downarrow	0	\downarrow	0		
	GABA receptor	antagonist	PTZ	↑	Excitatory	\rightarrow	× *	\rightarrow	×*		
	GABA receptor	antagonist	Picrotoxin	↑	Excitatory	\rightarrow	× *	\rightarrow	×*		
	Potassium channel	blocker	4-AP	ſ	Excitatory	Ţ	0	Ť	0		
	Sodium channel	blocker	CBZ	\downarrow	Inhibitory	\downarrow	0	\downarrow	0		
	KCNQ channel	blocker	Linopirdine	1	Excitatory	\uparrow	\bigcirc	↑	0		

Irug responses in 384-well plates											
Receptor/ Ion channel	Mode	Compound	cha	Expected nges in spike	Spike number changes in cocultured neurons with astrocytes						
				number	Hun	nan primary	iPS	SC-derived			
AMPA/NMDA receptors	agonist	Glutamate	Ţ	Excitatory	\downarrow	Excitotoxicity	\downarrow	Excitotoxicity			
Kainate receptors	agonist	Kainic acid	1	Excitatory	\downarrow	Excitotoxicity	\downarrow	Excitotoxicity			
AMPA/Kainate receptors	antagonist	CNQX	\downarrow	Inhibitory	\downarrow	0	\downarrow	0			
NMDA receptors	antagonist	D-AP5	\downarrow	Inhibitory	\downarrow	0	\downarrow	0			
Serotonergic receptors	Inhibitor	Amoxapine	Ţ	Excitatory	Ţ	0	Ţ	0			
GABA receptor	agonist	GABA	\downarrow	Inhibitory	\downarrow	0	\downarrow	0			
GABA receptor	antagonist	PTZ	↑	Excitatory	\rightarrow	×*	\rightarrow	×*			
GABA receptor	antagonist	Picrotoxin	1	Excitatory	\rightarrow	×*	\rightarrow	×*			
Potassium channel	blocker	4-AP	ſ	Excitatory	Ť	0	ſ	0			
Sodium channel	blocker	CBZ	\downarrow	Inhibitory	\downarrow	\bigcirc	\downarrow	0			
KCNQ channel	blocker	Linopirdine	↑	Excitatory	↑	0	↑	0			

iPSC-derived astrocytes are useful for HTS pharmacological assays.

Result 3: Multielectrode Array (MEA) assay Evaluation of neuronal-supportive functions

- excitatory neurons.

iPSC-derived astrocytes provide neuron-supportive functions.

Evaluation of drug responses

Pharmacological effect was detected dose-dependently when co-cultures with astrocytes were exposed to drugs.

The cells co-cultured on MEA plates show similar drug responses in 384-well plate.

Conclusions

- supportive functions.

- plate.

*e-mail: yuina.wada@jp.ricoh.com

The excitatory neurons contains little GABAergic neurons

Firing of the co-cultures with astrocytes exhibited higher frequency than its of mono-culture of

Synchronized network bursts were observed in co-cultures with astrocytes.

iPSC-derived astrocytes (Quick-Glia[™] Astrocyte) provide neuron-

These astrocytes are useful for pharmacological assays. The system is suited for HTS assays in 384-well plates. The cells co-cultured on MEA plates showed similar results in 384-well