

Evaluation of Ready-to-Use Quick-Neuron™ Plate - MEA 48

Society for Neuroscience 2021

<u>Tomoaki Nakayama¹</u>, Manabu Seo², Tomoyuki Aratani¹, Motoki Azuma¹ 1.RICOH COMPANY, Ltd. 2.Elixirgen Scientific, Inc.

(C)2021 Ricoh Company, Ltd. All rights reserved.

How can we evaluate neural activities?

Detection methods

Multi-electrode array

Connectivity

https://www.waisman.wisc.edu/cellular-and-molecularneuroscience/axion-maestro-pro-mea-multi-electrode-array/ Patch-Clamp

https://www.leica-microsystems.com/science-lab/the-patch-

Ca transient assay

RICOH

imagine. change.

Background is significantly reduced Contraction = Increase in cytosolic by masking extracellular solution Relaxation = Decrease in Ca²⁺

https://www.moleculardevices.com/en/assets/app-note/dd/flipr/compound-effects-uponcalcium-transients-in-beating-axiogenesis-cor.4u-human-ips-cell-derived-cardiomyocytes

Features of MEA(Multi-electrode Arrays)

clamp-technique/

Detection :Extracellular electrode Format :Well-plate format

Advantages

- ✓ Damageless for cells
- \checkmark High time-resolution
- ✓ Easy to assay

Multi-electrode Array

iPSC-derived neuron

Neural activities measured with MEA

Challenge of MEA Assays with iPSC-derived neurons

- Cumbersome to prepare and culture cells for months.
- It's difficult to optimize culture conditions for obtaining
- good responsibility to pharmacological drugs.

Our solution

Providing a Ready-to-use MEA plate!!

Users can evaluate drug efficacy and toxicity.

- Stable firing rate
- Assay immediately after receiving the plate
- Expected responses to typical compounds

RICOH

imagine. change.

What is Quick-Neuron[™] Plate?

"Quick-Neuron™ Plate frees users from experiment preparation!!"

CytoView MEA 48

Product Specifications

Cell : •Elixirgen Scientific Human iPSC-derived Neurons •Thermo Fisher Human Astrocytes

Plate : •Axion Biosystems CytoView MEA 48

Objective in this study

Evaluate Quick-Neuron[™] Plate can be use as Ready-to-use

- •Stability of firing rate
- Assay immediately after receiving the plate
- $\boldsymbol{\cdot} \textsc{To}$ show expected responses to typical compounds
 - -Receptor agonist and antagonists
 - -Anti-epileptic drugs

How stable is Quick-Neuron™ Plate?

The spontaneous firing rate of Quick-Neuron™ Plate was more stable than the plate with non-optimized condition.

Are the plates functional after long-distance transportation?

The plate transported from Tokyo to Baltimore showed the good response to 4AP, K⁺ channel blocker.

Can the plate be used for neuroscience research?

The plate showed robust responses to compounds that affect major receptors

Mode	Receptors / Ion channels	Compounds	Testing density	Changes of spike number	Ref: IC50
Negative control	-	Acetaminophen	1-100 µM	No change	
Neuro Transmitter	Glutamate receptors	Glutamate	1-100 µM		2.3 µM
	GABA receptors	GABA	0.1-10 µM		2.8 µM
	Dopamine receptors	Dopamine	0.1-10 µM		0.122 μM(D1) 2.76 μM (D2) 1.66 μM (D5)
	Muscarine receptors	Pilocarpine(HCI)	0.1-10 µM		18 μM(M1,3) 4.5 μM(M2)
	Histamine receptors	Histamine	0.3-30 µM		24 µM
Receptor Antagonist	AMPA, Kainate receptors	CNQX	0.5-50 µM		0.92/6.1µM
	GABA(A) receptors	Gabazine	0.3-30 µM		0.2 µM
	Dopamine D2 receptors	Chlorpromazine	0.1-10 µM		0.363 µM
	NMDA receptors	D-AP5	0.5-50 µM	No change	4.1 µM
	GABA(A) receptors	Picrotoxin	0.1-10 µM		2.4 µM
	Histamine H1 receptors	Ketotifen	0.1-10 µM		-

The plate can be also used for antiepileptic screening.

Quick-Neuron[™] Plate is expected to be a useful tool for nervous system drug discovery.

- ➤ We developed Quick-Neuron[™] Plate, which is Ready-to-use MEA plate for iPSC based neuronal assays
- > Quick-Neuron[™] Plate can be used for Ready-to-use plate.
 - Stable firing rate
 - Assay immediately after receiving the plate
 - Expected responses to typical compounds

E-mail: tomoaki.nakayama@jp.ricoh.com

RICOH imagine. change.